
ARMY RESEARCH LABORATORY

Basin Sculpting a Hybrid
Recurrent Feedforward Neural

Network

by Michael J. Vrabel

ARL-TR-1 522 January 1998

19980128 106

Approved for public release; distribution unlimited.



The findings in this report are not to be construed as an official Department of
the Army position unless so designated by other authorized documents.
Citation of manufacturer's or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.



Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-1 522 January 1998

Basin Sculpting a Hybrid
Recurrent Feedforward Neural
Network

Michael J. Vrabel
Sensors and Electron Devices Directorate

Aproe QUALITY Ipced2Zio mD

Approved for public release; distribution unlimited.



Abstract

The architecture of a recurrent neural-network-based content-addressable
memory is detailed along with a companion training algorithm. The memory
is designed to store vectors composed of strings of the integers 1 through 9.
The performance characteristics of the model-memory capacity and basin
size-are presented.
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1. Introduction

In a seminal paper [1], Hopfield introduced an associative (content-
addressable) memory based on a recurrent neural network architecture. De-
spite the dynamical nature of a recurrent network, convergence to stable
memory states for this model is guaranteed. Both the memory capacity of
the Hopfield network and the basins of attraction of its memory states have
been examined [2,3]. The network was demonstrated to suffer from a limited
memory capacity and very irregular basins. Although the original Hopfield
model is a binary state device, a model with a multilevel capability was later
demonstrated [4], opening the possibility of many other architectural con-
structs. This report details a more complex neural-network architecture and
a companion training algorithm designed to convert the network to a content-
addressable memory. The memory is designed to store integer vectors and to
have large, error-free basins of attraction.



2. Neural-Network Model

The architecture of the neural network to be described can be characterized
as locally feedback (recurrent) and globally feedforward. The neural network
is composed of M stages, each containing N nodes. Within each stage, all
nodes are fully connected, that is, each node communicates information to
all other nodes. A node can exist in one of nine discrete states, defined by
the integers 1 through 9. Feedback is incorporated within each stage. The
original state of each node n, representing the input data set, is defined as
VO°. The subsequent states of each node are determined by

a,n -0 5,n,. V'm n= 1,...N, k= 1,...3, (1)

where

a is the designation of the input vector and its children;

_T indicates that the function is to undergo a real to integer transfor-
mation according to the following rule: if I < Vk < 1 + 0.999....
then Ka'= I, where I is an integer;

j is a number, 1 through 9, that takes the value of Vk-1; thus, the
notation Wn,m(V k-') indicates that the value of Wj,n,m (the weight
that links nodes n and m) is a function of the ak- state of node

m (j = V-) (henceforth, I abbreviate the weight term as simply

W4j,n,rn);aam ,n

wi,n,n = 0.

The upper limit on k was chosen because it was found that at k = 3, Qn

invariably defines a stable point attractor. This is due, in large measure, to
the design of the training algorithm.

All neural network stages are cascaded. The output of one stage, that is, the
Vh state, is the input to the next stage.
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3. Training Algorithm

The neural network is intended to be a content-addressable memory. Stored
vectors are to be point attractors. Associated with each attractor is to be a
regular, error-free basin of attraction. By regular I mean that within some
Euclidean distance of each point attractor, all vectors are trapped within its
basin.

Training proceeds in several steps. As the evolving family of neural-network
weights approaches its final state, increasing levels of sophistication are incor-
porated into the algorithm. The goal is to determine the relationship between
node count and memory storage capacity-the scaling law-and the charac-
teristics of the basins of attraction-primarily, their size. The neural network
is trained by being introduced, one at a time, to random vectors chosen to
cluster near the stored memories. The neural network weights are then ad-
justed in response to each probing vector. This procedure continues until the
network is fully trained.

To the extent that any neural-network training algorithm can be considered a
standard, that standard is backpropagation [5]. In backpropagation, the algo-
rithm defines a measure of error between the actual and desired output of the
network and then propagates through the net a small correction to this error
(via gradient descent). The recurrent network of the present model has its
state updated asynchronously. Because each node is sequentially processed,
this process is potentially slow. To speed it up, a major requirement imposed
on the training algorithm is that it limits the number of cycles through the
net node set before a final, stable attractor state is achieved. We can accom-
plish this (or, at least, attempt it) by forcing training to proceed not in small
increments as with backpropagation, but rather in large increments designed
to force the evolving network to an attractor state as rapidly as possible.
Unlike backpropagation, training proceeds in a forward direction. The first
stage of the network is fully trained, and then the second stage is trained.
This procedure continues for all stages. This approach makes it especially
convenient to determine the effect of stage count on network performance.

One final note: because the activation function F of equation (1) is dis-
continuous, a training algorithm of the backpropagation type-one based

3



rigorously on gradient descent-is not feasible. The approach taken must be
more phenomenological.

3.1 Step One Training

Let b be the designation of one of the vectors to be stored in the neural
network. Let i be the designation of a randomly chosen vector. Define the
following term:

N

db.= (V° - (2)
n=1

where db,i is the square of the distance (Euclidean metric) from memory
vector b to test vector i and is the basis for determining the size for the
memory basin of attraction. The convention used throughout this report is
to designate an attractor state b as Vbn. The assumption is that, when the
network is fully trained, Vb% = Vb= Vbn To simplify all further discussions,
I consider only a single component of the above vectors, to be designated n.
It is a simple matter to extend all equations to the N terms of the vector.

In the discussion of the training process, several terms need to be defined.
First, generate the error value Eun:

N

E = ,n W3,n,m - Vbo N. (3)
m=1

This is the difference between the desired vector n component value of the
point attractor, V'°, and the component value generated by the randomly
chosen vector a scaled by N, the node count. Note that initially feedback
effects will be deleted. The initial training algorithm considers only a single
pass through equation (1). Thus, the final value of k from equation (1) is
to be 1. This is consistent with the desire to force the network into its final
attractor state as rapidly as possible.

Several histories are to be created and continually updated. The first is F1 :
F1=BIF• + a,

Fl - B1 ±1 + 1 (4)

where IF is the previously calculated value of F1 and B1 is a constant. B1
is used to adjust the time constant of the equation; a typical value is 10.
Initially, FI' = 0. Removed from the beginning of the training algorithm,
F1 provides a measure of the present performance of the training algorithm
compared to the more recent training cycles.
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A parallel set of node weights ¾) is created. These are updated when II <
F1 .

B 2 1a., .IW, n + Wi, n'
Wj,n,m =- B 2 E jnm + 1 (5)B2 Ea'n ± 1

for all m, where W' is the previously calculated value of W'V, with VV initialized
to 0. B 2 is an adjustable constant typically set to 0.1. When E,. is a small

value, B 2 is adjusted so that B 2 IEu, is not less than, typically, 5.0. Equation
(5) requires such a modification. W) represents an improved weight set when
compared with W. These terms are not incorporated into the neural net, but
rather are used as part of the training algorithm to periodically adjust the
weights of the neural network.

One final item is needed before a discussion of the training algorithm is
possible-a running weight average. This is a quantity that is updated with
every pass through the algorithm. It reflects, for each node, an adjusted
average about the weight values presently being invoked:

Ai,n,m 91

-' f VjnmW,,n,m, i :$ j, (6)Vln,m j=l

with
8 Ok,n,m (7)

1-jV-m n,m

9n:,m = k nE (8)
k=9

9
vS"M = Vk,n,m, (9)

k=1

where Ok,n,m is an accumulating statistic on the number of times Vom = k for
all previous cycles through the training algorithm. Ai,n,m reflects the weight
average (connecting nodes n and m) about i, weighted in favor of the points
nearest to i and those points that have previously been most often accessed.
The logic behind this quantity is as follows: It provides a target for adjusting
the weights of the neural network-a target that ensures a relatively smooth
weight function as i transitions from 1 through 9. And a smooth weight
function helps to minimize the difficulties associated with defining a large
basin of attraction.
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There is now sufficient introductory material to permit a presentation of
the phase one training algorithm. If E•un > 0, and Wk,n,m > AAk,n,m where
k=V-°a,, then if (Wk,n,m - Ak,n,m) < Ea'°,,,

on =EL -- Wk,n,m + Ak,n,m , (10)

Wk,n,m = Ak,n,m - (11)

If (Wk,n,m- Ak,n,m) > Ea,

Wknm - E, (12)

where the prime indicates the previous (prior to updating) value of Wk,n,m.

The above process is continued for additional, randomly chosen values of m
until either Eu,n goes to zero (that is, eq (12) is accessed) or all values of m
are exhausted. If the above process is exhausted and JEu,n d > 0, then one
additional step is required in the phase one training: Assuming Ean > 0,

Wk,,,m = W•,nm - k(Winm - Wk,n,m)E2•n, m = 1,.... N, (13)

where
N

:= (Wk,n,m - Wk,n,m) (14)
m=1

and Wk,n,m > Wk,n,m.

In equations (10) to (12) above, the algorithm resolves the difference between
the output of the neural network and the desired point attractor by forcing
the weights via equation (11) or equation (12) to yield the proper output.
Where this cannot be fully achieved (based upon the eq (10) to (12) internal
criteria), equations (13) and (14) are invoked. This adjusts the weights based
on the values of W, the historically best weight fit to the evolving memory.
The phase one process is continued until the improvement in network per-
formance, determined by equation (4), asymptotically approaches its final
value. At this point, step two training is invoked.

3.2 Steps Two, Three, and Four Training

Step two training involves a more careful analysis of the performance of the
network after each step one training cycle and a modification of the standard
for calculating W (eq (5) is disabled). At the end of each step one training
cycle, the following additional concepts are invoked. With each training cycle,
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the newly calculated weight value is tested (per eq (1)) to a set of C1 random
vectors (vector designation = a). Typically, C1 = 20. The average error is
calculated:

Fu([ I N ] )N (15)Znu= 1E 9 0.5 + E W3,-,-] -- V°bo,-)15

a=1 M=l

An error history is generated where if Su, < F•, then

r2- c2r/ + Sn (6
C2+1 (16)

where C2 is a constant (typical value = 10), and IF' is the previously cal-
culated value of F2. After sufficient training cycles (typically 100) to ensure
that equation (16) is no longer dominated by its initialization value, the ¾)
terms can be adjusted: If and only if

eu <]F 2, (17)

then
Wj,n,m =WV,n,m. (18)

If after typically 200 training cycles, equation (17) is not satisfied, then

Wj,n,m = WVJ,n,m (19)

for all j, n, and m, and training continues. As this training phase approaches
a limiting value (based on the eq (16) results), the third step of training
is entered. The third step is identical to the second step, except that the
error term of equation (15) is based on a single level of feedback. That is,
for equation (1) the final value for k is raised from 1 to 2. The fourth step of
training is identical to the third, except that the final value for k is 3.
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4. Neural Network Performance

Figures I to 3 summarize the performance of the neural network and its train-
ing algorithm. On these figures, error rate refers to the failure of a randomly
chosen vector to converge to the closest memory (or point attractor). A basin
edge is defined by that set of points equidistant between some memory state
and its nearest neighbor. Each curve can then be interpreted as an average
shape of the basin of attraction about each intentional point attractor.

Each memory set and test vector is chosen randomly. All memory sets were
selected from a large base of vectors. The members of each set were cho-
sen to be as distant as practical (based on the distance definition of eq (2))
from all other members, based on a random selection process. These figures
demonstrate what was observed throughout the algorithm test phase: model
performance is substantially independent of the vector set used. The curves
of figures 1 to 3 (the results of a single, randomly chosen family of attrac-
tor states) are a reasonable representation of the performance of the neural
network and its training algorithm.

The results in figures 1 to 3 can be summarized succinctly. Figure 1 demon-
strates the expected result-as the memory count increases, the basin sizes
shrink. Figures 2 and 3 demonstrate that little is to be gained from using
more than three stages. Figures 2 and 3 also demonstrate that memory ca-
pacity scales poorly (if at all) with an increased vector length-at least, in
the range of N up to 15. The curves also demonstrate that, depending on
memory count, each memory can have a sizable error-free basin of attraction.
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Figure 1. Basin performance as function of memory count. Memory count = 2 to 5 and
vector length = 12.
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Figure 2. Basin performance as function of stage count. Memory count = 3, vector length
= 8, and stage count = 1 to 3.
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Figure 3. Basin performance as function of stage count. Memory count = 4, vector length
= 15, and stage count = 1 to 3.
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5. Conclusion

I have demonstrated the feasibility of creating a multistate (as opposed to
binary) multistage neural-network-based content-addressable memory and
training algorithm. The model can generate large basins of attraction, albeit
for a very limited number of attractor states.
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